Транспирация, ее значение; лист как орган транспирации

Транспирация, ее значение; лист как орган транспирации

Транспирация, ее значение; лист как орган транспирации. Виды транспирации, ее показатели. Суточный ход транспирации, влияние внешних условии

СОДЕРЖАНИЕ

Значения: Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете; Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое; С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом чем интенсивнее транспирация, тем быстрее идет этот процесс.Основным транспирирующим органом является лист. Средняя толщина листа составляет 100—200 мкм. Паренхимные клетки листа расположены рыхло, между ними имеется система межклетников. Эпидермис — покровная ткань листа, состоит из компактно расположенных клеток, наружные стенки которых утолщены. Кроме того, листья большинства растений покрыты кутикулой. Удаление кутикулы во много раз повышает интенсивность испарения. Для соприкосновения листа с атмосферой имеются поры — устьица. Устьице — это отверстие (щель), ограниченная двумя замыкающими клетками. Каждая замыкающая клетка устьица в отличие от клеток эпидермиса имеет хлоропласта. В них происходит фотосинтез, хотя с меньшей интенсивностью, чем в клетках мезофилла. Устьица — одно из оригинальных приспособлений, обладающих способностью открываться и закрываться в зависимости от насыщенности замыкающих клеток водой. Обычно устьичные отверстия ограничены двумя замыкающими клетками, стенки которых неравномерно утолщены. У двудольных растений замыкающие клетки бобовидной, или полулунной, формы, при этом их внутренние прилегающие друг к другу клеточные стенки более толстые, а внешние — более тонкие.

Кутикулярная транспирация Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой и воском, образующие эффективный барьер на пути движения воды. На поверхности листьев часто развиты волоски, которые также влияют на водный режим листа, так как снижают скорость движения воздуха над его поверхностью и рассеивают свет и тем самым уменьшают потери воды за счет транспирации.Интенсивность кутикулярной транспирации варьирует у разных видов растений. У молодых листьев с тонкой кутикулой она может составлять около половины всей транспирации. У зрелых листьев с более мощной кутикулой кутикулярная транспирация равна 1/10 общей транспирации. В стареющих листьях из-за повреждения кутикулы она может возрастать. Таким образом, кутикулярная транспирация регулируется главным образом толщиной и целостностью кутикулы и других защитных покровных слоев на поверхности листьев. Кутикулярная транспирация обычно составляет около 10% от общей потери воды листом.

Устьичная транспирация Основная часть воды испаряется через устьица. Устьица играют важную роль в газообмене между листом и атмосферой, так как являются основным путем для водяного пара, углекислого газа и кислорода. Устьица находятся на обеих сторонах листа. Есть виды растений, у которых устьица располагаются только на нижней стороне листа. В среднем число устьиц колеблется от 50 до 500 на 1 мм². Транспирация через устьица идет почти с такой же скоростью, как и с поверхности чистой воды. Это объясняется законом И. Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий мала по отношению к площади всего листа (0,5-2 %), испарение воды через устьица идет очень интенсивно

Количественные показатели транспирации: Интенсивность транспирации – это количество, г, воды, испаряемой растением в единицу времени (ч) с единицы поверхности (дм 2 ). При определении продукционных характеристик рассчитывают ко- личество воды, израсходованной растением за весь вегетационный период, и относят его к сухой массе всего растения. Транспирационный коэффициент – это количество воды (г), расходуе- мой растением на образование 1 г сухого вещества.

Сутчный ход транспирации. У всех растений наблюдается периодичность суточного хода транспирации. У деревьев, теневых растений злаков (гидростабильные виды) испарение воды достигает максимума до наступления максимума дневной температуры. В полуденные часы транспирация падает. Вечером, при снижении дневных температур транспирация снова увеличивается. Такой ход транспирации приводит к незначительным изменениям осмотического давления и содержания воды в клетках в течение дня.

У видов, способных переносить резкие изменения содержания воды в клетках в течение дня, транспирация повышается в полдень и падает ночью (гидролабильные виды) Закрывание устьиц в полдень может быть вызвано увеличением уровня углекислого газа в листьях при повышении температуры воздуха (усиление дыхания и фотодыхания), а также возможным водным дефицитом, возникающим в тканях при высоких температурах и низкой влажности воздуха. Это приводит к повышению концентрации АБК и закрыванию устьиц.

На поступление воды в растение оказывают влияние внешние условия.

1. Температура. Поступление воды в растение зависит от температуры. С понижением температуры скорость поступления воды сокращается. Это может происходить в результате следующих причин:

а) повышается вязкость воды и снижается ее подвижность;

б) Тормозится рост корней;

в) Уменьшается скорость метаболических процессов;

2. Снижение аэрации почвы (повышение углекислого газа) Повышение концентрации углекислого газа приводит к повышению вязкости воды и снижает проницаемость цитоплазмы.

3. Содержание воды в почве, концентрация почвенного раствора. Вода поступает в корень, если водный потенциал корня ниже, чем водный потенциал почвы. На засоленных почвах или на почвах, где концентрация почвенного раствора очень высокая, водный потенциал почвы ниже. Поэтому вода начнет выделяться из корня. У растений, произрастающих на этих почвах — галофитах, в процессе эволюции выработался такой приспособительный признак как высокая

концентрация клеточного сока. Это обуславливает более низкий водный потенциал клеточного сока, вследствие чего вода из почвенного раствора поступает в корни.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Транспирация, ее физиологическое значение. Формы транспирации. Основные характеристики и показатели транспирации. Регуляция транспирации.

ТРАНСПИРАЦИЯ — потеря влаги в виде испарения воды с поверхности листьев или других частей растения. Большая часть воды, поступающей в растение через корни, теряется при транспирации.

1. Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура сильно транспирирующего листа может примерно на 7°С быть ниже температуры листа завядающего, нетранспирирующего. Это особенно важно в связи с тем, что перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза. Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру.

2. Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое.

3. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом чем интенсивнее транспирация, тем быстрее идет этот процесс.

Основным транспирирующим органом является лист. Поверхность листа покрыта порами — устьицами и у большинства растений большая часть устьиц находится на нижней части листа. Устьица ограничены замыкающими клетками и сопровождающими клетками, которые открывают и закрывают поры, в зависимости от насыщенности замыкающих клеток водой. Когда воды мало, замыкающие клетки плотно прилегают друг к другу и устьичная щель закрыта. Когда воды в замыкающих клетках много, то она давит на клеточные стенки, и более тонкие стенки растягиваются сильнее, а более толстые втягиваются внутрь, между замыкающими клетками появляется щель. Каждая замыкающая клетка устьица в отличие от клеток эпидермиса имеет хлоропласта. В них происходит фотосинтез, хотя с меньшей интенсивностью, чем в клетках мезофилла. Транспирация проходит через устьичные щели. листья большинства растений покрыты кутикулой, она варьирует как по составу, так и по толщине. Кутикула вместе с клетками эпидермиса образует как бы барьер на пути испарения паров воды. Удаление кутикулы во много раз повышает интенсивность испарения.

Виды транспирации:

Число устьиц в листе в среднем составляет 50-500 на 1 кв. мм. Транспирация с поверхности листа идет почти с такой же скоростью как и с поверхности чистой воды. Это объясняется законом Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий мала по отношению к площади всего листа (0,5-2 %), испарение воды через устьица идет очень интенсивно.

2. Кутикулярная транспирация.

Интенсивность кутикулярной транспирации варьирует у разных видов растений. У молодых листьев с тонкой кутикулой она может составлять около половины всей транспирации. У зрелых листьев с более мощной кутикулой кутикулярная транспирация равна 1/10 общей транспирации. В стареющих листьях из-за повреждения кутикулы она может возрастать. Таким образом, кутикулярная транспирация регулируется главным образом толщиной и целостностью кутикулы и других защитных покровных слоев на поверхности листьев. Кутикулярная транспирация обычно составляет около 10% от общей потери воды листом. Однако в некоторых случаях у растений, листья которых характеризуются слабым развитием кутикулы, доля этого вида транспирации может повышаться до 30%.

3. Транспирация через чечевички.

Суточный ход транспирации:

Периодичность суточного хода транспирации наблюдается у многих растений, но у разных видов растений устьица функционируют неодинаково. У деревьев, теневыносливых растений, многих злаков и других гидростабильных видов с совершенной регуляцией устьичной транспирации испарение воды начинается на рассвете, достигает максимума в утренние часы. В полдень транспирация снижается и вновь увеличивается в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях.

У видов растений, способных переносить резкие изменения содержания воды в клетках в течение дня, то есть у гидролабильных видов, наблюдается одновершинный суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна или полностью прекращается.

По способности регулировать свой водный обмен, растения делят на пойкилогидрические и гомойогидрические. Пойкилогидрическими называются растения, которые не могут сами регулировать свой водообмен. К этой группе относятся почвенные водоросли, лишайники, мхи, папоротники и некоторые покрытосеменные. Гомойогидрическими называются растения, которые регулируют свой водообмен. Гомойгидрическими являются покрытосеменные растения.

Закрывание устьиц в полдень может быть вызвано увеличением уровня углекислого газа в листьях при повышении температуры воздуха (усиление дыхания и фотодыхания), а также возможным водным дефицитом, возникающим в тканях при высоких температурах и низкой влажности воздуха. Это приводит к повышению концентрации АБК и закрыванию устьиц.

Снижение температуры воздуха во второй половине дня способствует открыванию устьиц и усилению фотосинтеза.

ТРАНСПИРАЦИЯ

В основе расходования воды растительным организмом лежит физический процесс испарения – переход воды из жидкого состояния в парообразное, происходящее в результате соприкосновения органов растения с ненасыщенной водой атмосферой. Но у растений это не просто испарение воды, это сложный физиологический процесс регулируемый самим растением рядом анатомических и физиологических механизмов. Поэтому термин «транспирация» введен для того, чтобы подчеркнуть отличие этого физиологического процесса от чисто физического процесса. Транспирация это испарение воды с внутренних тканей листа через устьица. Таким образом, транспирация – это физиологический процесс испарения воды растениями. Главный орган транспирации – лист. Каковое же биологическое значение транспирации? Во-первых, транспирация обеспечивает непрерывность водного тока по растению его непрерывность, связывая растение в единое целое. Во-вторых. обеспечивает с водным током передвижение минеральных и частично органических веществ по растению , от корня по стеблю к листьям.

В третьих, регулирует температуру растения, защищает его от перегрева на прямых солнечных лучах. Без транспирации происходил бы быстрый перегрев растения, что вызывало бы нарушало биохимических и физиологических процессов. Транспирацию можно считать приспособительным процессом, возникшим в процессе эволюции растений после выхода на сушу. У водных растений, транспирации нет, и нет специальных органов транспирации – устьиц. Следовательно для растений она не обязательна, как, например, дыхание. Она наблюдается только у наземных и надводных растений.

Транспирация как физиологический процесс в свою очередь тесно связана с другими важнейшими процессами: фотосинтезом, дыханием, минеральным питанием. Так как через одни и те же органы – устьица идет газообмен и фотосинтеза,, и дыхания, а с минеральным питанием связано с транспортом веществ от корня с транспирационным током ко всем наземным органам. Как физиологический процесс транспирация имеет количественные и качественные единицы измерения, раскрывающие её напряженность и связь с фотосинтезом. Интенсивност транспирации, это количественный показатель, обычно выражают в граммах испарения воды за один час на единицу S или на один грамм сухой массы

( днем – 15-250 г/м 2 за час; ночью – 1-20 г/м 2 за час. Продуктивность транспирации, это качественный показатель, определяется количество граммов сухого вещества, образуемого при испарении 1000 граммов воды (≈ 1-8 г на 1000 г воды) Транспирационный коэффициент – количество граммов воды, которая затрачивается на образование одного грамма сухого вещества (≈ 120-150 г на 1 г сухого вещества Для оценки эффективности использования воды определяется коэффициент водопотребления эвапотранспирация. Под эвапотранспирацией понимают суммарный расход воды за вегетационный период 1 га посева или насаждения. Сюда включается испарение как с почвенной поверхности (эвапорация) и транспирации всех растений, куда входят и сорные. Это можно использовать и при определении водопотреблении фитоценоза. Водопотреблением посева можно управлять, снижая расход воды путем уничтожения сорных растений, мульчированием почвы, своевременным рыхлением, улучшая продуктивность растений применение минеральных удобрений и других агротехнических приёмов Эта единица измерения водопотери используется при расчете выращивание растений при поливах..На синтез затрачивается всего 0,2% Н2О; остальная – на транспирацию

Лист как орган транспирации Основным транспирирующим органом растения является лист, общее строение листа известно из курса ботаники. Нам следует остановиться на его особенностях строения, связанных с транспирацией. Несмотря на то, что лист служит органом испарения воды ( транспирации) его анатомо-морфологичекое строение направлено на препятствие непродуктивной потери воды (рис ). Сверху и снизу лист покрыт эпидермисом, клетки которого плотно прижаты друг к другу, поверхность этих клеток покрыта кутикулой, непроницаемой для воды, к тому же она еще дополнительно покрывается восковым налетом. Кутин и воск – гидрофобны, что затрудняет испарение воды.

Несмотря на весьма небольшую толщину листа (100-200 мкм, строение мезофилла довольно сложное, которое определяет два важнейших процесса: фотосинтез и транспирацию. Эти процессы тесно взаимосвязаны. Их протекание определяется непосредственным контактом с атмосферой. Поэтому мезофилл имеет систему межклетников и проводящих пучков, первые увеличивают испаряющую поверхность и газообмен, вторые обеспечивают скорость поступления воды в листовую пластинку и отток пластических веществ, образуемых при фотосинтезе. Для контакта мезофилла с атмосферой в эпидермисе имеются мельчайшие отверстия устьица, через которые идет поглощение углекислого газа и испарение воды. Подсчеты показали, что площадь отверстий устьиц на поверхности листа составляет всего 1%, но самих устьиц на 1 мм 2 приходится от 50 до 500 штук, т.е. весь лист в порах, но величина этих пор составляет всего – 3-12 мкм (нм). Обычно у наземных двудольных растений устьица расположены на нижней стороне листа, а у плавающих листьев на верхней . У растений лилейных и злаковых устьица расположены на обеих сторонах. Но оказалось , что если у листа двудольного растения замазать нижнюю сторону вазелином, то обнаруживается испарение воды с верхней стороны. Это испарение получило название кутикулярной транспирации. Таким образом, различают два основных типа транспирации: устьичную и кутикулярную транспирации. Некоторые ученые отмечают испарение воды через чечевички молодых побегов, и назвали его лентикулярной транспирацией. В результате транспираци чечевичек (лентикулярная транспирация) в зимнее время часто возникает водный дефицит и растения погибают через обезвоживание. По объему испарения воды, устьичная составляет до 90%, а кутикулярная – до 10%. Однако это соотношение не постоянно. В молодых растущих листьев, когда устьица еще полностью не сформировались, а кутикула тонкая – кутикулярная транспирация достигает 60 % и выше. По мере старения листа и развития кутикулы доля её в транспирации уменьшается. Более высокий процент кутикулярной транспирации наблюдается у теневыносливых растений, у которых кутикула слабо развита. Устьичная транспирация складывается из 3-х этапов:1) испарение воды из поверхности влажных клеток мезофилла; 2) диффузия паров воды через устьица и 3) диффузия водяных паров от поверхности листа (рис. ). Каждый этап имеет свои особенности и механизм регуляции транспирации.

Первый этап. Как известно, клеточная стенка представляет переплетение нитей микро- и макрофибрил, между которыми пространство заполнено водой, и вода находится как в капилляре. Вода испаряется из эти капилляров. При недостаточном снабжении листа водой, клеточные стенки подсыхают, мениск в капиллярах становится вогнутым, увеличивается поверхностное натяжение и удержание воды силами сцепления, испарение воды уменьшается. К тому же в подсохшей клеточной стенке вода уже испаряется не в межклетники, а во внутрь капилляра, в которых повышается давление паров, что так же снижает испарение воды. Мы видим регуляцию транспирации при открытых устьицах, Этот процесс получил название внеустьичная транспирация.

Второй этап начинается, когда вода отрывается от оболочек клеток мезофилла и переходит в межклетники и подустьичную полость в виде пара. Теперь пары будут устремляться к устьичной щели и проходить через неё. Под устьицем создается недостаток паров, что приводит автоматически к испарению воды с поверхности клеток. Иная картина наблюдается когда устьица закрыты, все пространство под ними быстро насыщается парами и переход воды из жидкого состояние в парообразное прекращается и потери воды листом нет. Вот поэтому степень открытия устьиц является основным механизмом регуляции интенсивности транспирации.

Третий этап устьичной трансирайии – это диффузия паров от поверхности листа. Этот этап регулируется в основном условиями внешней среды : температурой, влажностью воздуха, ветром, и приспособлениями, сокращающими транспирацию: опушение, погружению устьиц в мезофилл ( рис. ), скручивание листьев ( ковыль) и др.

Основное испарение воды идет через устьица. При полностью открытых устьицах транспирация идет интенсивно и почти приравнивается к испарению воды со свободной поверхности такой же площади. Но вспомним, что при полностью открытых устьицах их общая поверхность составляет всего 1% от площади листа, т.е казалось бы , что транспирация должна быть в 100 раз меньше, чем испарение со свободной поверхности воды. Но измерение транспирации и испарения с одинаковой водной поверхности показало, что транспирация всего меньше в 2 раза. Для сравнительной активности транспирации введено понятие относительной транспирации, которая показывает, что транспирация не только более интенсивна, но и саморегулируемая

.Относительная транспирация – это отношение транспирации к свободному испарению с водной поверхности той же площади и за то же времени. В среднем она составляет 0,2 -0,5, а у некоторых даже 0,9. Почему же так ?

Объяснение этому дали в 1900 году английские физиологи Браун и Эскомби, которые установили, что испарение из ряда мелких отверстий идет быстрее , чем и одного крупного той же площади. Согласно Закону Стефана, связанного с так называемым краевым эффектом. Испарение с краёв идет быстрее, чем в центре. В центре происходит насыщение паров сильнее и связь с молекулами прочнее, а с краёв вода легче отрывается и скорее рассеивается, вокруг краев создаётся свободное диффузное поле и пары расходятся веером ( рис. ). Поэтому при испарении таких краевых молекул значительно больше у ряда мелких отверстий, расположенных друг от друга не ближе 10- кратного расстояния их диаметра, так как испарение пропорционально не площади, а диаметру отверстия

Устьица идеально отвечают этим требованиям: имеют малый диаметр и расположены на достаточном удалении друг от друга. При открытых устьицах испарение идет интенсивно, тогда как при их закрытии испарение снижается. В этом и заключается устьичная регуляция транспирации. При недостатке влаги устьица автоматически закрываются.

Основным фактором, обусловливающим движение устьиц, является содержание воды в листе. При достаточном её количестве, устьица открыты, при недостатке – закрыты.

В связи с этим различают 3 типа реакции устьичного аппарата на внешние условия среды:

1. Гидропассивные реакции – это закрытие устьиц в результате перенасыщения паренхимных клеток листа водой и механическое сдавливание устьиц, что закрывает устьичную щель. Это обычно наблюдается при обильном поливе дождеванием и может служить причиной подавления фотосинтеза.

2. Гидроактивная реакция закрывания или открывания устьиц – это движения, вызванные изменением в содержании воды в замыкающих клетках устьиц, что было рассмотрено выше.

3. Фотоактитвная реакция – связана с закрытием устьиц в темноте и открытием на свету. Согласно современным представлениям открывание устьиц индуцируется выходом Н + из замыкающих клеток под действием света. Под действие света включается протонная помпа Н + — атефаза, которая выкачивает протоны из замыкающих клеток в клетки примыкающие. Поставщиком АТФ является процесс фотосинтеза. На смену протона в замыкающие клетки из прилегающих поступает ион К+ и для уравновешивания ион СL – и накапливаются в вакуолях повышая в них осмотический потенциал. С другой стороны, выход протона Н + водорода, повышает рН среды и в щелочных условиях усиливается активность фермента ФЭПВК – карбокилазы ( фосфоэнол-карбоксилазы), которая ускоряет процесс карбоксилирования ФЭПВК (фосфоэнолпировиноградная кислота) и превращает её в малат (яблочная кислота) , тоже осмотические активное вещество. Ионы К + и СL – и малат приводят к усилению поступление воды в вакуоль, повышению тургора и открытию устьиц. Это можно представить в виде следующей схемы:

Формы транспирации и ее физиологическое значение

Всем известно, что вода играет определяющую роль в жизни растений. Нормальное развитие любого растительного организма возможно только в том случае, когда все его органы и ткани хорошо насыщены влагой. Однако система водообмена между растением и окружающей средой в действительности сложна и многокомпонентна.

Что такое транспирация

Транспирация – это регулируемый физиологический процесс движения воды по органам растительного организма, завершающийся ее потерей через испарение.

Таким образом, под влиянием атмосферных факторов запасы воды в надземных органах растения постоянно расходуются и, следовательно, должны все время пополняться за счет новых поступлений. По мере испарения воды в клетках растения возникает некая сосущая сила, которая «подтягивает» воду из соседних клеток и так по цепочке – до самых корней. Таким образом, главный «двигатель» тока воды от корней к листьям находится именно в верхних частях растений, которые, говоря упрощенно, работают как маленькие насосы. Если вникнуть в процесс чуть глубже, то водный обмен в жизни растений представляет собой следующую цепочку: вытягивание воды из почвы корнями, подъем ее к надземным органам, испарение. Эти три процесса находятся в постоянном взаимодействии. В клетках корневой системы растения образуется так называемое осмотическое давление, под воздействием которого находящаяся в почве вода активно всасывается корнями.

Когда в результате появления большого количества листьев и повышения температуры окружающей среды вода как бы начинает высасываться из растения самой атмосферой, в сосудах растений возникает дефицит давления, передающийся вниз, к корням, и подталкивающий их к новой «работе». Как видим, корневая система растения тянет воду из почвы под воздействием двух сил – собственной, активной и пассивной, передающейся сверху, которая и вызывается транспирацией.

Какую роль выполняет транспирация в физиологии растений

Процесс транспирации играет огромную роль в жизни растений.

Прежде всего, следует понимать, что именно транспирация обеспечивает растениям защиту от перегрева. Если в яркий солнечный день мы измерим у одного и того же растения температуру здорового и увядшего листа, разница может составлять до семи градусов, причем если увядший лист на солнце может оказаться горячее, чем окружающий воздух, то температура транспирирующего листа обычно бывает на несколько градусов ниже! Это говорит о том, что проходящие в здоровом листе процессы транспирации позволяют ему самостоятельно охлаждать себя, в противном случае лист перегревается и погибает.

Наконец, транспирация является той удивительной силой, которая может заставить воду подняться внутри растения по всей его высоте, что имеет огромное значение, например, для высокорослых деревьев, верхние листочки которых благодаря рассматриваемому процессу могут получать необходимое количество влаги и питательных веществ.

Виды транспирации

Существует два вида транспирации – устьичная и кутикулярная. Для того чтобы разобраться в том, что представляет собой тот и другой виды, вспомним из уроков ботаники строение листа, так как именно этот орган растения является основным в процессе транспирации.

Итак, лист состоит из следующих тканей:

  • кожица (эпидермис) – внешняя покровная часть листа, представляющая собой один ряд клеток, плотно соединенный между собой для обеспечения защиты внутренних тканей от бактерий, механических повреждений и высыхания. Поверх этого слоя часто находится дополнительный защитный восковой налет, именуемый кутикулой;
  • основная ткань (мезофилл), которая находится внутри двух слоев эпидермиса (верхнего и нижнего);
  • жилки, по которым движется вода и растворенные в ней питательные вещества;
  • устьица – специальные замыкающие клетки и отверстие между ними, под которыми находится воздушная полость. Устьичные клетки способны закрываться и открываться в зависимости от того, достаточно ли в них воды. Именно через эти клетки в основном и осуществляется процесс испарения воды, а также газообмен.

Сначала вода начинает испаряться с поверхности основной ткани клеток. В результате эти клетки теряют влагу, водные мениски в капиллярах вгибаются вовнутрь, поверхностное натяжение увеличивается, и дальнейший процесс испарения воды затрудняется, что позволяет растению значительно экономить воду. Затем испарившаяся вода через устьичные щели выходит наружу. Пока устьица открыты, вода испаряется с листа с такой же скоростью, что и с водной поверхности, то есть диффузия через устьица очень высокая.

Дело в том, что при одной и той же площади вода быстрее испаряется через несколько небольших отверстий, расположенных на некотором расстоянии, чем через одно крупное. Даже после того как устьица закрываются наполовину, интенсивность транспирации остается почти такой же высокой. Но когда устьица закрываются, транспирация уменьшается в несколько раз.

Количество устьиц и их расположение у различных растений неодинаково, у одних видов они находятся только на внутренней стороне листа, у других – и сверху и снизу, однако, как видно из вышесказанного, не столько количество устьиц влияет на интенсивность испарения, сколько степень их открытости: если воды в клетке много, устьице открывается, когда возникает дефицит – происходит выпрямление замыкающих клеток, ширина устьичной щели уменьшается – и устьице закрывается.

Кутикулярная

Кутикула, так же как и устьица, обладает способностью реагировать на степень насыщенности листа водой. Находящиеся на поверхности листа волоски защищают лист от движений воздуха и солнечных лучей, что позволяет сократить потери воды. Когда устьица закрыты, кутикулярная транспирация особенно важна. Интенсивность этого вида транспирации зависит от толщины кутикулы (чем толще слой, тем меньше испарение). Большое значение имеет и возраст растения – на зрелых листьях водопотери составляют всего 10 % от всего процесса транспирации, в то время как на молодых могут доходить до половины. Впрочем, увеличение кутикулярной транспирации наблюдается и на слишком старых листьях, если их защитный слой повреждается от возраста, рассыхается или растрескивается.

Описание процесса транспирации

На процесс транспирации существенное влияние оказывают несколько значимых факторов.

Факторы влияющие на процесс транспирации

Как было указано выше, интенсивность транспирации определяется в первую очередь степенью насыщенности водой клеток листа растения. В свою очередь, на это состояние главное воздействие оказывают внешние условия – влажность воздуха, температура, а также количество света.

Понятно, что при сухом воздухе процессы испарения происходят более интенсивно. А вот влажность почвы действует на транспирацию обратным образом: чем суше земля, тем меньше воды попадает в растение, тем больше ее дефицит и, соответственно, меньше транспирация.

При повышении температуры также увеличивается транспирация. Однако, пожалуй, основной фактор, влияющий на транспирацию, – это все же свет. При поглощении листовой пластиной солнечного света увеличивается температура листа и, соответственно, раскрываются устьица и повышается интенсивность транспирации.

Исходя из влияния света на движения устьиц даже выделяют три основные группы растений по суточному ходу транспирации. У первой группы ночью устьица закрыты, утром они открываются и в течение светового дня двигаются, в зависимости от наличия или отсутствия дефицита воды. У второй группы ночное состояние устьиц является «перевертышем» дневного (если днем были открыты, ночью закрываются, и наоборот). У третьей группы днем состояние устьиц зависит от насыщенности листа водой, но ночью они всегда открыты. В качестве примеров представителей первой группы можно привести некоторые злаковые растения, ко второй относятся тонколистные растения, например, горох, свекла, клевер, к третьей – капуста и другие представители растительного мира с толстыми листьями.

Но в целом следует сказать, что ночью транспирация всегда менее интенсивна, чем днем, поскольку в это время суток температура ниже, света нет, а влажность, напротив, повышена. В течение светового дня транспирация обычно наиболее продуктивна в полуденное время, а со снижением солнечной активности этот процесс замедляется.

Отношение интенсивности транспирации с единицы площади поверхности листа в единицу времени к испарению такой же площади свободной водной поверхности называется относительной транспирацией.

Как происходит регулировка водного баланса

Основную часть воды растение поглощает из почвы посредством корневой системы.

Кроме корней, у некоторых растений есть способность поглощать воду и наземными органами (например, мхи и лишайники впитывают влагу всей своей поверхностью).

Поступившая в растение вода распределяется по всем его органам, двигаясь от клетки к клетке, и используется на необходимые для жизни растения процессы. Небольшое количество влаги уходит на фотосинтез, но большая часть необходима для поддержания наполненности тканей (так называемый тургор), а также восполнения потерь от транспирации (испарения), без которых жизнедеятельность растения невозможна. Влага испаряется при любом соприкосновении с воздухом, поэтому этот процесс происходит во всех частях растения.

Если количество воды, которое поглощается растением, гармонично согласовывается с ее расходованием на все указанные цели, водный баланс растения урегулирован правильно, и организм развивается нормально. Нарушения такого баланса могут быть ситуативными или длительными. С кратковременными колебаниями водного баланса многие наземные растения в процессе эволюции научились справляться, но длительные сбои в процессах водоснабжении и испарения, как правило, приводят к гибели любого растения.

Формы транспирации и ее физиологическое значение

Транспирация слагается из двух процессов: 1 — передвижения воды в листе из сосудов ксилемы по симпласту и, преимущественно, по клеточным стенкам, так как в стенках транспорт воды встречает меньшее сопротивление, 2 — испарения воды из клеточных стенок в межклетники и подъустьичные полости с последующей диффузией в окружающую атмосферу через устьичные щели (слайд 4.3). Чем меньше относительная влажность атмосферного воздуха, тем ниже его водный потенциал. Если водный потенциал воздуха меньше водного потенциала подъустьичных полостей, то молекулы воды испаряются наружу.

Основным фактором, влияющим на открывание и закрывание устьиц, является содержание воды в листе, в том числе и в замыкающих клетках устьиц (слайд 4.4). Высокая оводненность замыкающих клеток приводит к открыванию устьиц. При недостатке воды замыкающие клетки выпрямляются и устьичная щель закрывается. Кроме того, по мере увеличения водного дефицита в тканях растения повышается концентрация ингибитора роста абсцизовой кислоты. Она подавляет деятельность Н + -насосов в плазмалемме замыкающих клеток, вследствие чего снижается их тургор и устьица закрываются. Абсцизовая кислота также ингибирует синтез фермента -амилазы, что приводит к снижению гидролиза крахмала, поэтому сосущая сила замыкающих клеток уменьшается и устьица закрываются (слайд 4.5).

Так как замыкающие клетки устьиц содержат хлоропласты, синтез углеводов в процессе фотосинтеза в замыкающих клетках увеличивает их сосущую силу и вызывает поглощение воды, способствуя этим открыванию устьиц.

При снижении концентрации СО2 в подъустьичной полости ниже 0,03 %, тургор замыкающих клеток увеличивается и устьица открываются. Повышение концентрации СО2 в воздухе вызывает закрытие устьиц. Это происходит в межклетниках листа ночью, когда в результате отсутствия фотосинтеза и продолжающегося дыхания уровень углекислого газа в тканях повышается. Такое влияние углекислого газа объясняет, почему ночью устьица закрыты и открываются с восходом солнца. Сдвиг рН в щелочную сторону вследствие уменьшения концентрации СО2 увеличивает активность ферментов, участвующих в распаде крахмала, тогда как при кислом рН при повышении содержания СО2 в межклетниках повышается активность ферментов, катализирующих синтез крахмала.

На свету замыкающие клетки устьиц содержат значительно больше калия, чем в темноте. При открывании устьиц содержание калия в замыкающих клетках увеличивается в 4 раза при одновременном снижении его содержания в сопутствующих клетках. Установлено повышение содержания АТФ в замыкающих клетках устьиц в процессе их открывания. АТФ, образованная в процессе фотосинтетического фосфорилирования в замыкающих клетках, используется для усиления поступления калия. Усиленное поступление ионов калия повышает сосущую силу замыкающих клеток. В темноте ионы калия выделяются из замыкающих клеток и устьица закрываются.

Суточные колебания транспирации.

Периодичность суточного хода транспирации наблюдается у многих растений, но у разных видов растений устьица функционируют неодинаково (слайд 4.6). У деревьев, теневыносливых растений, многих злаков и других гидростабильных видов с совершенной регуляцией устьичной транспирации испарение воды начинается на рассвете, достигает максимума в утренние часы. В полдень транспирация снижается и вновь увеличивается в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов растений, способных переносить резкие изменения содержания воды в клетках в течение дня, то есть у гидролабильных видов, наблюдается одновершинный суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна или полностью прекращается.

Ночью у большинства растений устьица закрыты и газообмен и транспирация минимальны. В светлый период суток при благоприятных погодных условиях устьичные щели находятся в открытом состоянии. Через открытые устьица углекислый газ легко проникает во внутренние ткани растения, а кислород, образовавшийся в процессе фотосинтеза, а также пары воды выделяются в атмосферу.

Транспирация у растений и ее биологическое значение

Растения обладают своеобразной «кровеносной системой», позволяющей обеспечивать их всеми необходимыми для развития веществами. Ее венец – освобождение от воды через листья и стебли, которое биологи назвали «транспирация».

Транспирация – что это такое

Если говорить об этом понятии подробнее, то транспирация – не что иное, как испарение в атмосферу влаги из листьев и стеблей живых растений. Это явление помогает воде, которую всасывает корневая система, иногда из достаточно глубоких слоев грунта (в пустынях корни могут уходить вглубь даже на двадцать метров), подниматься по стеблям или стволам к листьям, цветам, плодам, доставляя ко всем частям растительного организма нужные минералы и элементы. И новая порция воды с питательными веществами «подсасывается» благодаря транспирации у растений: место освобождается испарением использованной влаги через мелкие поры на листьях, расположенные с тыльной стороны. Интенсивность движения воды зависит от внешних факторов – времени суток, температуры и влажности воздуха. Другими словами, растение транспирирует, когда влажность воздуха внутри него выше влажности окружающей атмосферы. Доказано, что десять процентов всей влаги, которая испаряется на поверхности Земли, относится на счет именно растительного мира нашей планеты.

Биологическое значение транспирации

Перефразируя известное выражение, можно сказать: если какое-то явление существует, значит, оно для чего-то нужно. Справедливо это и по отношению к транспирации. Для растений она имеет жизненно важное значение, и считать ее губительной для мира флоры неверно.

  1. Процесс транспирации обеспечивает постоянное движение воды «от пят до макушки» — через корни, стебли, листья.
  2. Таким образом удается регулировать температурный и водный режимы. В самое жаркое время летнего дня листья обычно прохладнее окружающей атмосферы на три — восемь градусов.
  3. Испарение помогает разгрузить растение от излишка влаги внутри и дать место новой партии воды, полной питательными микроэлементами.
  4. Транспирация предотвращает перегревание и ожоги листьев при высокой температуре или попадании прямых лучей солнца.

Но если воды уходит больше, чем растение успевает «выпить» из земли корнями, ему грозит опасность:

  • дефицит влаги;
  • приостановка роста;
  • уменьшение интенсивности фотосинтеза;
  • нарушение обмена веществ внутри растительного организма.

Итогом может стать не просто увядание, но даже гибель. И все-таки, если условия не экстремальны, растение способно самостоятельно регулировать уровень испарения. Если воды к поверхности, откуда она испаряется, приходит недостаточно, транспирация замедляется.

Процессы передвижения воды

Как мы уже выяснили, транспирация – естественный физиологический процесс в растительном мире. Главный ее орган – лист. Поскольку листьев у растений много, они образуют достаточно большую площадь для испарения. В результате водный потенциал уменьшается, а это сигнал для клеток листьев к поглощению воды из ксилемных жилок. По принципу падающего домино следом провоцируется движение воды из корней по ксилеме к листьям. Образуется нечто сродни верхнему конечному двигателю. И чем активнее транспирация, тем мощнее верхний «двигатель», и тем сильнее всасывающая сила «двигателя» нижнего – корневой системы.

Из стебля вода движется в листок, проходя по жилкам через черешок. По дороге жилки «разбегаются», число проводящих элементов становится меньше. Сами жилки превращаются в отдельные трахеиды, которые образуют очень густую сеть. Задерживают влагу в листе однослойный эпидермис с кутикулой на его поверхности. Превратившаяся в пар вода выходит сквозь устьица – специальные многочисленные отверстия микронных размеров, которые растение в состоянии расширять или сужать в зависимости от внешних условий.

Механизм и интенсивность транспирации

Растения поглощают лишь незначительную часть всего объема воды, который добывают из грунта – 0,2 процента, иногда немного больше. Все остальное испаряется в воздух. Механизм работы верхнего конечного двигателя достаточно прост. Основан он на том, что обычно в атмосфере маловато водяных паров, а значит, ее водный потенциал можно охарактеризовать как негативный. Например, при относительной влажности воздуха в 90 процентов атмосферное давление равняется 140 барам. А у подавляющего большинства представителей царства флоры давление внутри листа варьируется между 1 и 30 барами. Такой большой разрыв и обеспечивает транспирацию. Водный дефицит, спускаясь по клеткам от листьев по стеблям, неминуемо достигает корней. Это вынуждает нижний двигатель «запускаться», всасывая воду из грунта. А испарение с поверхности листьев поднимает ее, вместе со всеми минеральными солями, обратно наверх.

Есть несколько факторов, влияющих на интенсивность транспирации.

  1. «Наполненность» растения водой. Когда она достигает критического уровня, устьица сужаются.
  2. Насыщенность воздуха углекислым газом. Большинство растений на чрезмерную его концентрацию отвечают закрытием устьиц.
  3. Освещение. Обычно когда светло, устьица открыты. Темнеет – закрываются.
  4. Температура воздуха. Переваливая за 35-40°С, она провоцирует закрытие устьиц.
  5. Температура поверхности самого листа. Нагреваясь на каждые 10°С, лист отдает вдвое больше влаги.
  6. Влажность воздуха и скорость ветра. Чем суше атмосфера, тем выше транспирация.

Транспирация: виды

Испарение воды растениями проходит в три фазы:

  1. Продвижение из жилок в верхние слои мезофилла.
  2. Испарение из стенок клетки в межклеточные промежутки и пустоты вокруг устьиц; последующий выход наружу.
  3. Последний этап подразделяется на:
  • транспирацию через устьица — устьютную;
  • испарение в атмосферу непосредственно через клетки эпидермиса – кутикулярную транспирацию.

Ее можно разбить на две стадии.

  1. Переход воды из капельного состояния (в таком виде она пребывает в клеточных оболочках) в газообразное в межклеточных промежутках. В это время растение способно регулировать силу транспирации. Если воды ему не хватает, в корневых и стеблевых сосудах возникает сильное напряжение, задерживающее продвижение воды к клеткам листьев. И испарение замедляется.
  2. Выделение пара на поверхность через устьица. Как только водяной пар выходит из межклеточных пустот, они снова заполняются за счет перемещения из оболочек клеток. Основной рычаг координирования транспирации – это степень открытости устьиц.

Кутикулярная

Транспирация, которую биологи назвали кутикулярной, у разных видов растений очень отличается по своей интенсивности. У одних потеря влаги за ее счет совсем незначительна. Например, семействам магнолиевых и хвойных толстый эпидермис и кутикула поверх него на листьях не дают терять много жидкости. У других транспортируемая таким образом вода может составлять до 50 процентов общего объема. Особенно силен процесс, когда листья еще молоденькие, с очень тонким эпидермисом и кутикулой.

Суточный ход и показатели транспирации

На протяжении суток растения «дышат» с разной силой.

  1. Если на улице ясно и не очень сухо, первый глубокий «вдох» они делают на рассвете, когда устьица открываются на максимальную ширину. Во второй половине дня они понемногу сужаются и закрываются, когда садится солнце.
  2. В сухую погоду это происходит намного раньше – уже к десяти-одиннадцати часам. Как только к вечеру зной спадает, они опять открываются до заката.
  3. Когда небо затянуто облаками, устьица обычно открыты до вечера, но не очень широко.

Суточные колебания потери воды сопоставимы с движением устьиц. Транспирация несколько опережает поступление влаги, которая не может с такой же скоростью проходить по клеткам растения. Поэтому в дневное время образуется определенный дефицит. Зато ночью, когда устьица закрыты и «спят», он восполняется. Но во многом ситуация зависит от региона, где растение живет, и его вида. Так, у кактусовых и молочайных устьица открываются исключительно по ночам.

В умеренном климате для накопления одного грамма сухих веществ растения задействуют около 300 граммов воды. В общем, данный показатель может колебаться от 125 до 1000 граммов.

Формы транспирации и ее физиологическое значение

Здравствуйте читатели моего проекта «Биология для студентов»! Подготовка к экзаменам, зачетам и госэкзаменам, а также рефераты и презентации занимают много времени, если готовится по учебникам. Есть три способа подготовки к экзамену: по учебнику, по лекциям и поиск в интернете. Готовиться по учебнику очень долго. Что касается лекций, не у всех есть хорошие лекции, так как не все преподаватели их нормально читают, и кроме того не все успевают их записывать. И остается третий вариант искать ответы на вопросы в интернете. Не для кого не секрет, что в настоящее время большинство студентов предпочитают именно этот вариант.

За пять лет учебы на факультете биотехнологии и биологии подготовка к сессии у меня занимала много времени. В Рунете не так много биологических сайтов. Конспекты по экономике, истории, социологии, политологии, математике найти очень просто. А ответы на вопросы по ботанике, зоологии, генетики, биофизике, биохимии гораздо сложнее. Наверное, потому что биология не самая распространенная специальность. К тому же биологические предметы не являются общеобразовательными в отличие, например, от экономики и истории, которые изучаются практически на любых специальностях. В Рунете я не нашел ни одного сайта на которым был бы представлен необходимый контент для подготовки к экзаменам, зачетам и госэкзаменам по биологическим дисциплинам. И я решил создать его.

Также я хотел бы вас попросить рассказать об этом сайте своим однокурсникам, друзьям и знакомым, которые являются студентами биологических специальностей. Это поможет развитию данного проекта.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector